Total Synthesis of (\pm)-8-Oxotabersonine *via* the Indole-2,3-quinodimethane Strategy

Mark Ladlow, Peter M. Cairns, and Philip Magnus*

Department of Chemistry, Indiana University, Bloomington, Indiana 47405, U.S.A.

The enecarbamate (9) on treatment with the Vilsmeier reagent is converted into the aldehyde (10), which was transformed into (±)-8-oxotabersonine (1).

If the indole-2,3-quinodimethane strategy for the synthesis of indole alkaloids¹ is to be successful as a method for assembling complex alkaloids, it is essential that procedures are developed for the introduction of the peripheral functionality.² In this paper we report a direct method for introducing the 3-methoxycarbonyl group of Aspidosperma alkaloids in the context of the total synthesis of (\pm) -8-oxotabersonine (1).^{3,4} 8-Oxotabersonine (1) was isolated from the seeds of Amsonia elliptica Roem et Schult, and its synthesis from (\pm) -8-oxovincadifformine was described by Lévy.⁵

The imine (2)6 was treated with the mixed anhydride (3) in PhCl containing Pri₂NEt₂ heated at reflux to give the tetracyclic adduct (4) (58%). While this reaction works in the cited yield on a mmol scale, we were not able to increase the scale without drastic reductions in yields despite extensive experimentation. This problem has been discussed, and a solution described in a recent full paper from this laboratory.⁶ Although the above restriction exists, nevertheless, (4) is

available in ≥ 10 g quantities, because both (2) and (3) are readily available, and the production of (4) is the first step in a highly convergent sequence. Oxidation of (4) [m-chloroperbenzoic acid (MCPBA), CH₂Cl₂, 0°C] to give the derived sulphoxide (4a), followed by intramolecular Pummerer reaction gave (5), which was desulphurised with Raney nickel in EtOAc to give (6) [82%, from (4)].

There are only two methods which directly introduce the 3-methoxycarbonyl group into substrates such as (6), and both proceed in low yield. As a consequence, we were particularly interested in examining the electrophilic substitution chemistry of enecarbamates with carbon electrophiles.

Conversion of (6) into the thioamide (7) was achieved using Belleau's reagent⁹ in tetrahydrofuran (THF) (-3 to 25 °C over 1.25 h) in 80% yield. The thioamide (7) was treated with p-toluenesulphinyl chloride (2.5 equiv.)–Pri₂NEt (5.0 equiv.) in PhCl at reflux for 15 min to give the α,β -unsaturated thioamide (8) (86%), m.p. 160.5—161.5 °C.

Oxidation of (8) with MCPBA¹⁰ (1.2 equiv.) in CH₂Cl₂ at -20°C gave (9) (77%), m.p. 122-123°C. When (9) was exposed to the Vilsmeier reagent POCl3-dimethylformamide (DMF) (20 equiv.), 24 °C, 1 h, then 65 °C for 15 min, followed by a basic work-up (2 M NaOH), the α,β -unsaturated aldehyde (10) (76%) was isolated, m.p. 224—226°C (EtOAc), δ_H 9.21(CHO). The Viehe reagent¹¹ (Cl₂C=N+Me₂Cl-) did not react with (9).

CO₂R¹

R

(11) $R = R^1 = H$

(13) $R = CO_2Me, R^1 = Me$

(1) $R = H, R^1 = Me$

All attempts to oxidise the aldehyde (10) to give the corresponding carboxylic acid (11) or 8-oxotabersonine (1) (AgO; MnO2, KCN, MeOH; NaOCl2, etc.) failed, because of the reactivity of the 2,3-double bond. To overcome this difficulty, (10) was treated with NaH, ClCO₂Me, THF to give (12) (84%). This compound is also directly available from (9) by Vilsmeier formylation, followed by mild work-up to avoid hydrolysis of the N-CO₂Me group; but it is contaminated with (10), and consequently, it is better to reintroduce the carbamate. Oxidation of (12) using NaClO₂, H₂NSO₃H, acetone, isopropenyl acetate, 10% aqueous NaH2PO4, followed by diazomethane, gave the methyl ester (13) (88%). Mild basic hydrolysis of (13) with 1 m NaOMe-MeOH gave (\pm)-8-oxotabersonine (1) (97%) [m.p. 161—163 °C, (lit.,4 151—153 °C); u.v. λ_{max} (EtOH) 202 (ϵ 15 700 dm³ mol⁻¹ cm⁻¹), 292 (9 600), and 326 (12 900) nm; ¹H n.m.r. (300 MHz, CDCl₃) δ 9.05 (1H, bs), 7.24 (1H, d, J 8.0 Hz), 7.23 (1H, t, J 8.0 Hz), 6.94 (1H, d, J 7.7 Hz), 6.89 (1H, d, J 7.7 Hz), 6.45 (1H, d, J 9.9 Hz), 5.96 (1H, J 9.9 Hz), 4.31 (1H, dd, J 11.7 and 6.3 Hz), 3.98 (1H, s), 3.79 (3H, s), 3.39 (1H, ddd, J 11.7, 6.3, and 6.3 Hz), 2.62 (1H, dd, J 15.6 and 1.9 Hz), 2.07 (1H, d, J 15.6 Hz), 1.91 (2H, m), 1.10 (1H, q, J 7.3 Hz), 1.01 (1H, q, J 7.3 Hz), 0.73 (3H, t, J 7.3 Hz)].

Thermolysis of (13) at 240°C did not produce any retro-Diels-Alder processes that may have eventually resulted in rearrangement to give the iboga-type indole alkaloids, or fragmentation to give 5-ethylpyridine and a carbazole.^{12†}

The National Institutes of Health are gratefully thanked for their financial support of this research.

Received, 28th July 1986; Com. 1063

References

- 1 For a general description of the indole-2,3-quinodimethane strategy see: P. Magnus, T. Gallagher, P. Brown, and P. Pappalardo, Acc. Chem. Res., 1984, 17, 35.
- P. Magnus and P. Pappalardo, J. Am. Chem. Soc., 1986, 108, 212. 3 P. Magnus, P. Pappalardo, and I. Southwell, Tetrahedron, 1986, **42**, 3215.
- 4 N. Aimi, Y. Asada, S.-I. Sakai, and J. Haginiwa, Chem. Pharm. Bull., 1978, 26(4), 1182.
- 5 J.-Y. Laronze, J. Laronze-Fontaine, J. Lévy, and J. Le Men, Tetrahedron Lett., 1974, 491; J. Lévy, J.-Y. Laronze, J. Laronze-Fontaine, and J. Le Men, *ibid.*, 1978, 1579.
- 6 P. Magnus and P. M. Cairns, J. Am. Chem. Soc., 1986, 108, 217. 7 L. E. Overman, M. Sworin, and R. M. Burk, J. Org. Chem., 1983, 48, 2685; E. Wenkert, B. Porter, D. P. Simmons, J. Ardisson, N. Kunesch, and J. Poisson, ibid., 1984, 49, 3733. Added in proof. Professor Bau has recently described a new procedure using Vilsmeier chemistry: K. Yoshida, S. Nomura, and Y. Bau, Tetrahedron, 1985, 41, 5495.
- 8 T. Shono, Y. Matsumura, K. Tsubata, and Y. Sugihara, Tetrahedron Lett., 1982, 1201; H. Fritz and S. H. Eggers, Liebigs Ann. Chem., 1970, 736, 33; H. Fritz and G. Rubach, ibid., 1968, 715, 135.
- 9 G. Lajoie, F. Lépine, L. Maziak, and B. Belleau, Tetrahedron Lett., 1983, 3815
- 10 K. S. Kochlar, D. A. Cottrell, and H. W. Pinnick, Tetrahedron Lett., 1983, 1323
- 11 Z. Janousek and H. G. Viehe, Part 5 in the series 'Iminium Salts in
- Organic Chemistry, Adv. Org. Chem., 1976, 9, 343. 12 E. Wenkert, J. Am. Chem. Soc., 1962, 84, 98; R. Thomas, Tetrahedron Lett., 1961, 544; A. A. Qureshi and A. I. Scott, Chem. Commun., 1968, 945; A. I. Scott, Acc. Chem. Res., 1970, 3, 151; A. I. Scott and C. C. Wei, Tetrahedron, 1974, 30, 3003.

[†] All new compounds were fully characterised by elemental analyses and physical and spectroscopic data.